Pine River DDT Sediment Site – A Nonattenuation Site

James Chapman, Ph.D.
Ecologist
USEPA Region 5

Site History

- 50-acre chemical plant at located at St. Louis, Gratiot Co., MI
 - Adjacent to Pine River Impoundment formed by the St. Louis dam
- 1936–1976 Michigan Chemical Corp.
- 1976-1978 (closed) Velsicol Corp.

1982 Consent Judgment

- Main Chemicals of Concern
 - PBB polybrominated biphenyl
 - DDT 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane
 - HBB hexabromobenzene
 - Tris tris(2,3 dibromopropyl)phosphate
- Remediate main plant site
 - Demolish buildings
 - Clay cap
 - Containment wall to prevent further contamination of the Pine River impoundment

1982 Consent Judgment

- "Following analysis of the relevant environmental conditions, the parties have concluded that the most appropriate environmental alternative for the Pine River/St. Louis Reservoir sediments is to leave the existing contaminated sediments undisturbed."
- MI is responsible for fish monitoring

Nonattenuation

- Contrary to expectations, lipidnormalized pp-DDTR (pp-DDT, pp-DDE, and pp-DDD) conc. in carp skin-off fillets increased over time.
 - + 140-150 % in the St. Louis impoundment
 - 1989 to 1995/1997
 - + 40-80 % downstream of the dam
 - 1985 to 1994/97

Carp Fillet Monitoring Data, St. Louis Impoundment (+/- SEM)

Carp Fillet Monitoring Data, Downstream of St. Louis (+/- SEM)

Biological Half-life in Fish

- Total DDT
 - 64-428 days (menhaden)
 - No apparent elimination in 1 study (trout)
- pp'-DDE
 - 336 d (trout)
 - Niimi, A. 1987. Rev Environ Contam Toxicol 99: 1-46.
- After 10 y, expect no more than 0.3 % of original body burden to remain in fish

Response to Nonattenuation

- 1997 sediment/fish investigations
- 1998 risk assessments of sediment contaminants (HH and wildlife)
 - Main contaminant of concern DDT
- 1999 sediment removal action
- 2000 sediment remedial action (ongoing)

3-D Sediment DDT

Sediment DDT Distribution

Why Did Attenuation Fail?

- Location of contaminated sediments behind dam appears favorable for natural "capping"
 - (but not for attenuation by erosion)
- The reasons why natural processes failed to attenuate contamination at this site are not fully understood.

Why Did Attenuation Fail?

- Potential explanations
 - river characteristics
 - co-contaminant effect on bioavailability
 - biotic effects
 - incomplete source control

River Characteristics

- Insufficient natural "capping"
 - 15 years after consent judgment
- 1997 surficial sediment sampling in St. Louis Impoundment (0-6 inch)
 - 68 % with >0.8 ppm DDTR (21/31)
- Middle basin (received plant discharge)
 - 34 ppm DDTR mean surficial conc.
 - 169 ppm DDTR maximum surficial conc.

River Characteristics

- Low sediment loading?
 - Relatively short reach (2.5 river miles) to next upstream dam (Alma, MI)
 - Only 2 relatively small tributaries (Horse and Sugar Creeks) in this reach
- St. Louis dam prevents major scouring losses of contaminated sediments

Co-contaminant Effects

- Upstream source of petroleum wastes (refinery at Alma, MI)
 - Co-mingled with Velsicol wastes in St. Louis Impoundment sediments
 - Sediments appear dark and oily, and have a strong petroleum odor
 - Except in areas of highest DDT conc. (at percent levels), which are white

Co-contaminant Effects

- Effect of petroleum products on partitioning of nonionic organics depends on the petroleum viscosity
 - Affects oil sorption vs. emulsion components
 - High viscosity oily wastes decreased partitioning of co-contaminants to water
 - Low viscosity increased partitioning
 - Walter, T., et al. 2000. Chemosphere 41: 387-397.

Biotic effects

- Carp bodywt increased during monitoring
 - Impoundment
 - 1989 1.1 kg
 - 1995 1.8 kg
 - 1997 3.1 kg
 - Downstream of dam
 - 1985 1.2 kg
 - 1994 2.0 kg
 - 1997 2.8 kg

Biotic Effects

- Impaired reproduction?
 - 9-15 y usual longevity for carp (47 y max.)
 - Brown, M. 1957. The Physiology of Fishes, Vol.
 1. Acad. Press. pp. 361-400.
 - Increased size over monitoring period might reflect non-reproducing population
- Embryo/yolk-sac fry more susceptible to DDTR lethality than fry or juveniles
 - Carlson, D., et al. 2000. EHP 108: 249-255

Incomplete Source Control

- Impoundment surface water
 - 0.1-0.3 ug/L DDTR (1999) (excluding dewatered Removal sediment area)
- Groundwater at site near Impoundment
 - 0.1-2.0 ug/L DDTR, mean 0.7 ug/L (2000)
- Stained soils observed between slurry wall and river during removal excavation
 - DDTR conc. in seep 54,700 ug/L (2000)

Containment Assessment

- 94 % of average flow through the containment system passes through underlying clay till
 - 9.7 million gal/y (1984-1996)
- 6 % through containment wall
 - 0.6 million gal/y (1984-1996)
 - Estimates by Memphis Environ. Center prepared for Velsicol Chemical Corp. (1997)

Containment Assessment

- Monitoring wells along Impoundment
 - 0.69 ug/L DDTR (0.14-2.0 ug/L) (2000)
 - 0.025-0.073 kg/y to river (mean-max.)
 - assuming 100 % delivery to river
- Mean release of DDTR to Impoundment surface water is 30 kg/y
 - based on 1999 surface water measurements excluding dewatered Removal sediment area
- Groundwater contribution only 1-2 %

Containment Assessment

- Assume all flow through containment wall is at seep concentration:
 - 54,700 ug/L DDTR (2000) (single analysis)
 - 128 kg/y DDTR to river
- Exceeds loading to river based on surface water measurements (30 kg/y)
 - excluding dewatered Removal sediment area

Seep Contribution Issues

- Problem contaminated fill was used outside of containment wall
 - Seep measurement might represent localized (not general) contamination
 - Seep conc. (57,700 ug/L) is 2-3 orders of magnitude > solubility
 - 25-140 ug/L at 25 °C (pp-/op-DDT, DDE, DDD)
- Ongoing investigation

Summary

- Even in a low-energy environment behind a dam, natural processes were insufficient for reducing risks related to sediment DDT contamination within an acceptable time-frame in the Pine River.
 - High surficial sediment DDTR levels after 15 years
 - No decrease in fish tissue DDTR levels over the last decade

Summary

- Discharge of contaminated groundwater to the Pine River can be eliminated as a possible cause of nonattenuation.
- Potential responsible factors include
 - Low sediment loading/lack of scouring
 - Co-contaminant effects on partitioning
 - Increased mean fish size over time
 - Poor containment wall performance

Summary

The effectiveness of natural process remedies may be constrained by a variety of abiotic and biotic processes.